翻訳と辞書
Words near each other
・ エーティーワークス
・ エーテボリ
・ エーテボリィ
・ エーテボリー
・ エーテボリ交響楽団
・ エーテボリ大学
・ エーテル
・ エーテル (Lily Chou-Chouの曲)
・ エーテル (化学)
・ エーテル (曖昧さ回避)
エーテル (物理)
・ エーテル (神学)
・ エーテルアミン
・ エーテルインターライン
・ エーテル体
・ エーテル化
・ エーテル型脂質
・ エーテル抽出物
・ エーテル結合
・ エーテル脂質


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

エーテル (物理) : ウィキペディア日本語版
エーテル (物理)

エーテル (, , ) は、主に19世紀までの物理学で、伝播するために必要だと思われた媒質を表す術語である。現代では特殊相対性理論などの理論がエーテルの概念を用いずに確立されており、エーテルは廃れた物理学理論の一部であると考えられている。
このエーテルの語源はギリシア語アイテール () であり、ラテン語を経由して英語になった。アイテールの原義は「燃やす」または「輝く」であり、古代ギリシア以来、天空を満たす物質を指して用いられた。英語ではイーサーのように読まれる。
==光とエーテルの歴史==
空間に何らかの物質が充満しているという考えは古くからあった。
17世紀以後、力や光が空間を伝わるための媒質としてエーテルの存在が仮定された。その端緒の1つはデカルトに見られ、デカルトはぶどうの樽のぶどう酒のようにあらゆる物質の隙間を埋める「微細な物質」を想定して、それが光を伝達させるとした。また惑星はその渦に乗って動いていると考えた(渦動説)〔『屈折光学』, 〕。
ニュートンは、光の実体は多数の微粒子であると考えた。これは、光が直進することや物体表面で反射されるという事実に基づく仮定である。しかし、光が粒子であると仮定すると、屈折回折を説明することが難しいという問題があった。屈折を説明するために、ニュートンは『光学』(1704年)で「エーテル様の媒質 ()」が光よりも「速い」振動を伝えており、追いこされた光は「反射の発作」や「透過の発作」の状態になり、結果として屈折や回折が生じると述べた。この発作とは、ニュートン環などで見られる干渉縞を説明するための仮説である。屈折面を通過した光の粒子は過渡的な状態になり、「反射の発作」の状態と「透過の発作」の状態を一定の間隔で遷移する。そして次の屈折面を通過する際に、その粒子が「反射の発作」の状態であれば反射され、「透過の発作」の状態にあれば透過する〔
〕。ニュートンはこれらの「発作」のしくみについては説明しなかったが、これは今日でいう、光子の位相の概念に相当する。ニュートンは、このエーテル様の媒質の振動は熱放射、すなわち真空中でも熱が伝わるという事実に関係があると考え、次のように述べた。

空気を排出して真空の空間を作ったとしても、そこに空気より微小な媒質が残存し、その媒質の振動により熱が伝えられるのではあるまいか?そして、その媒質は光をして屈折または反射せしめる媒質と同一であり、その振動によって光は物体間の熱輸送を行い、さらに、その振動によって光は反射や透過の発作に至るのではあるまいか?〔''Opticks '', Bk III, Part I, Qu 18, p.323.〕


ホイヘンスは、ニュートンよりも前に、光はエーテル中を伝播する縦波であるとの仮説を唱えたが、ニュートンはこの考えを否定した。もし光が縦波であるならば、その進行方向以外に特別な方向を持つことができず、偏光のような現象は考えられない。従って、偏光の向きによって屈折の具合が変わる複屈折などの現象を説明することができない。この点について、ニュートンは光の粒子は球形ではなく、その「側面」の向きの違いによって複屈折が起こると考えた。ニュートンが光は波ではないと考えた理由は他にもあった。もしエーテルが空間中に充満していて、エーテル同士の相互作用により光が伝わるならば、エーテルが巨大な物体、すなわち惑星彗星の運動に影響を与えないと考えることは困難である。しかし現実にはそのような影響は観測されていないから、エーテルは存在しないと考えた。
ブラッドリー1728年に、地球の位置、つまり季節による恒星が見える位置のずれ(年周視差)の測定を試みて失敗した。しかし、この際に、地球の運動による恒星の見かけ上の位置のずれ、すなわち光行差を発見した。ブラッドリーは、これをニュートンの理論に沿って解釈した。つまり、光の微粒子が飛んで来る見かけ上の方向は、地球の運動の向きと速さに依存すると考えることで測定結果を合理的に説明でき、さらに、地球の運動の速度と光行差から光の速さを知ることができた。これは、鉛直に落下する雨粒が、高速で移動する電車の中からは斜めに降っているように見える、という現象と同様の解釈である。一方、光がエーテルの振動であると考える場合には、光行差を説明することは困難だった。地球がエーテル中を運動しているにもかかわらず、地球の周りのエーテルは掻き乱されずに静止している、つまり地球とエーテルは殆ど相互作用をしないということになるからである。ニュートンは、この考えを受け入れなかった。
19世紀の物理学者ヤングフレネルは光は波動であると考えた。彼らは、光が横波であると考えるなら、波の振動の向きによって偏光を考えることができ、複屈折を説明することができると指摘した。さらに、回折について様々な実験を行うことにより、ニュートンの粒子モデルを否定した。

しかしこの説にも問題が残る。当時の物理学では、光の波が伝播するためには、水面の波や音の波と同様に何らかの媒質が必要であると考えられており、ガス状のエーテルが空間に充満している、というホイヘンスの考えが支持されていたが、光をこのような媒質中の横波と考えるのは困難である。横波を伝えるためには、エーテルの個々の粒子は強く結合して紐のようなものになっていなければならず、流体状のエーテルでは縦波しか伝えることができないからである。この強固な結合を持つ紐状のエーテルが普通の物質と相互作用しないと考えるのは奇妙であり、ニュートンやホイヘンスが縦波にこだわったのは、このためである。
コーシーは、エーテルが普通の物質に引きずられると考えたが、そうすると今度は光行差を説明することができなくなってしまう。コーシーは、また、エーテル中に縦波が発生しないということから、エーテルの圧縮率は負であると考えた。グリーンは、このような流体は安定に存在し得ないと指摘した。一方、ストークスは引きずり仮説を支持した。彼は、個々のエーテル粒子は高周波で振動しつつも全体として滑かに動くようなモデルを構築した。このモデルにより、エーテル同士は強く相互作用し、故に光を伝え、かつ、普通の物質とは相互作用しないという性質が説明された。
後年、マクスウェルの方程式から電磁波の存在が予想され、さらにヘルツは電磁波の送受信が可能であることを実験的に示した。マクスウェルの方程式によれば、電磁波が伝播する速さcは誘電率εおよび透磁率μとの間に
: c^2 = \frac
の関係があり、この速さは、実験的に知られていた光の速さと一致した。この事実から、光は電磁波の一種であると推定された。しかし、ニュートン力学基準系、つまりガリレイの相対性原理に従うならば、光の速さは、その光と同じ方向に進む観測者からは遅く、逆方向に進む観測者からは速く見えるはずである。上式によれば、観測者の運動にかかわらず光の速さは一定である。従って、上式のような関係は一般には成立できないと考えられた。そこで、エーテルの運動を基準とした絶対座標系が存在し、その座標系でのみマクスウェルの方程式は厳密に成立すると推定された。マクスウェルやフィッツジェラルドらは、このようなエーテルのモデルを提唱した。なお、今日の特殊相対性理論の観点からは、マクスウェルの方程式は常に成立し、ガリレイの相対性原理が不正確だと考えられている。

しかし、これらのモデルでは、エーテルが持つ機械的性質は、実に奇妙なものにならざるを得なかった。すなわち、空間に充満していることから流体でなければならないが、高周波の光を伝えるためには、よりもはるかに硬くなければならない。さらに、天体の運動に影響を与えないという事実から、質量粘性も零のはずである。さらに、エーテル自体は透明で非圧縮性かつ極めて連続的でなければならない。
こうした状況を、マクスウェルはブリタニカ百科事典に次のように書いた〔Maxwell, James Clerk (1878), "Ether", Encyclopædia Britannica Ninth Edition 8: 568–572〕。

Aethers were invented for the planets to swim in, to constitute electric atmospheres and magnetic affluvia, to convey sensations from one part of our bodies to another, and so on, until all space had been filled three or four times over with aethers.... The only aether which has survived is that which was invented by Huygens to explain the propagation of light.

(参考訳)

エーテルは、惑星の泳動、電磁気の振る舞い、そして我々の日常に起こる様々な事象を説明するために発明された。しかし、辻褄を合わせるためには、エーテルの理論は三重にも四重にも変更され、複雑怪奇なるものとなった。...結局のところ、ホイヘンスが光の伝播を説明するために発明したもの以上に納得できる理論は、残らなかった。




抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「エーテル (物理)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.